首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12576篇
  免费   620篇
  国内免费   150篇
化学   8836篇
晶体学   133篇
力学   590篇
综合类   6篇
数学   1466篇
物理学   2315篇
  2023年   109篇
  2022年   207篇
  2021年   500篇
  2020年   437篇
  2019年   537篇
  2018年   551篇
  2017年   451篇
  2016年   735篇
  2015年   516篇
  2014年   668篇
  2013年   1292篇
  2012年   1013篇
  2011年   991篇
  2010年   677篇
  2009年   562篇
  2008年   629篇
  2007年   547篇
  2006年   404篇
  2005年   398篇
  2004年   261篇
  2003年   257篇
  2002年   213篇
  2001年   118篇
  2000年   93篇
  1999年   71篇
  1998年   59篇
  1997年   61篇
  1996年   54篇
  1995年   45篇
  1994年   51篇
  1993年   36篇
  1992年   49篇
  1991年   43篇
  1990年   46篇
  1989年   48篇
  1988年   43篇
  1987年   46篇
  1986年   44篇
  1985年   50篇
  1984年   49篇
  1983年   27篇
  1982年   44篇
  1981年   30篇
  1980年   33篇
  1979年   32篇
  1978年   27篇
  1977年   26篇
  1976年   22篇
  1975年   16篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Cover Image     
Pd-PEPPSI type complexes are widely used as precatalyst in a variety of organic reactions, including the Negishi, Kumada and Suzuki-Miyaura cross-coupling reactions. The aim of this research is to determine potential proposed reaction pathways 1, 2, or 2′ (See Schemes 1 and S1–S4 ) for Pd-PEPPSI precatalyst activation in the presence of ethylene glycol as a solvent also in the gas phase at Cam-B3LYP-D3 method nominated among eight DFT methods examined. There is also investigation into the impact of promoter bases (NaOEt, NaOiPr, NaOtBu) on precatalyst activation of Pd-PEPPSI. Eventually, the most favorable proposed reaction pathway and promoter base for reducing Pd(II) to Pd(0) are predicted computationally. Notably, our findings are consistent with the organ Pd-PEPPSI type complexes that offer increased catalytic activity and provide basic information in the presence of solvents designing the monoligated Pd(0)-solvent.  相似文献   
72.
In this study, Bi2S3@BSA–Bio–MTX nanoparticles (NPs) were synthesized for the first time by bovine serum albumin (BSA)-mediated biomineralization (Bi2S3@BSA NPs) followed by covalent bonding of biotin (Bio) and methotrexate (MTX) on the surface of the Bi2S3@BSA NPs via carbodiimide chemistry. The synthesized NPs were globular and exhibited uniform morphology with a hydrodynamic diameter of 107.6 ± 6.81 nm (mean ± standard deviation) and zeta potential of −20.9 ± 2.18 mV. Drug release from Bi2S3@BSA–Bio–MTX NPs indicated an enzyme-dependent release pattern. The in vitro biocompatibility of NPs was confirmed by investigating their cytotoxicity against the HEK-293 cell line and hemolysis assay test, whereas the in vivo biocompatibility of the NPs was evaluated and confirmed by the lethal dose 50 (LD50) test. To evaluate the in vitro anticancer activity of the functionalized NPs and MTX, their cytotoxic effects was assessed against 4T1 cancer cells by 5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with and without X-ray radiation. Results showed that Bi2S3@BSA–Bio–MTX NPs have excellent anticancer activity, especially following X-ray radiation.  相似文献   
73.
A new unsymmetrical five-coordinate Schiff base ligand (HL) with an N4O donor set ( 2 ) has been prepared by condensation of N1-(2-morpholinoethyl)-N1-([pyridine-2-yl]methyl)propane-1,3-diamine with 2-hydroxy-benzaldehyde. Metal complexes [ML]n+ (M = Zn2+, Cd2+, Mn2+, Cu2+, Ni2+, Ag+, Fe3+, and Co2+ ( 3–10 ) were synthesized by the reaction of the ligand and metal salts in ethanol. The resulting products were characterized by elemental analyses, infrared, 1H and 13C nuclear magnetic resonance spectra (in the case of Cd and Zn complexes), UV–Vis, electrospray ionization-mass spectrometric, and conductivity measurements. The structure of the complexes [ZnL](ClO4) ( 3 ), [CdL](ClO4) ( 4 ), and [CuL](ClO4) ( 7 ) has been determined by single-crystal X-ray diffraction analysis. The metal complexes were determined to have a distorted trigonal bipyramidal (Zn and Cd) or a distorted square pyramidal (Cu) geometry. The cytotoxic potential of each compound (1–10) against MCF-7 and MDA-MB-231 (breast cancer cells), PC-3 (prostate cancer cells), and WI-38 human normal lung fibroblast cells was evaluated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Compounds 1, 2, and 10 did not display any activity toward any cell line tested. None of the compounds except compound 8 was cytotoxic toward PC-3. Compounds 4 and 8 showed the highest cytotoxic activity against the MCF-7 and MDA-MB-231 cell lines. Because compounds 3, 6, and 9 have similar half-maximal inhibitory concentration values against cancer cells and normal cells, these compounds displayed poor selectivity between cancer and normal cells. More importantly, it was observed that compound 5 acts differently toward different types of cell lines. For example, it displays lower cytotoxicity against the WI-38 normal cell line than it does against the MDA-MB-231 cell line.  相似文献   
74.
Cu(II) Schiff base complex supported on Fe3O4@SiO2 nanoparticles was employed as a magnetic nanocatalyst (nanocomposite) with a phase transfer functionality for the one-pot preparation of α-aminonitriles (Strecker reaction). The desired α-aminonitriles were obtained from the reaction of aromatic or aliphatic aldehydes, aniline or benzyl amine, NaCN, and 1.6 mol% of the catalyst in water at room temperature and good to excellent yields were obtained for all substrates. The catalyst was characterized analytically and instrumentally including Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric, nuclear magnetic resonance, energy-dispersive X-ray spectroscopy, inductively coupled plasma spectroscopy, vibrating-sample magnetometry analysis, dynamic light scattering, Brunauer–Emmett–Teller surface area, field emission scanning electron microscopy, and transmission electron microscopy analyses. The reaction mechanism was investigated, in which the performance of the catalyst as a phase transition factor seems to be probable. The catalyst showed high activity, high turnover frequency (TOF)s, significant selectivity, and fast performance toward the Strecker synthesis. The nanocatalyst can be readily and quickly separated from the reaction mixture with an external magnet and can be reused for at least seven successive reaction cycles without significant reduction in efficiency.  相似文献   
75.
A porous cross-linked poly (ethyleneamine)-polysulfonamide (PEA-PSA) as a novel organic support system is synthesized in the presence of silica template by nanocasting technique. The paper demonstrates immobilization of CuI nanoparticles inside the pores (PEA-PSA@CuI) for the facile recovery and recycling of these nanoparticles. The presence of porous PEA-PSA and PEA-PSA@CuI nanocomposites was confirmed using FT-IR spectroscopy, FE-SEM, EDX, TGA, XRD, TEM, BET, XPS, WDX, 1H NMR, and ICP-OES techniques. The PEA-PSA@CuI along with Ag(I)/K2S2O8 was implemented as a reusable cooperative catalyst-oxidant system in the N-arylation of p-toluenesulfonamide with substituted carboxylic acids in mild condition. So, the novel decarboxylative cross-coupling catalyzed by copper and silver has been developed. Aromatic, secondary and tertiary aliphatic acids underwent high efficient decarboxylative processes with p-toluenesulfonamide to afford the corresponding products. This method provides a practical approach for the flexible synthesis of sulfonamides from the readily affordable substrates. The catalyst is highly reusable and efficient, especially in terms of time and yield of the desired product.  相似文献   
76.
In this study, quinazolinone derivatives have been synthesized via a suitable and efficient procedure by one-potmulti-component reactions of 3-amino-1,2,4-triazole or 2-aminobenzimidazole, dimedone and aromatic aldehydes in the presence of Fe3O4@TiO2-IL as nanocatalyst under solvent-free condition. The products were prepared in good to excellent yields using Fe3O4@TiO2-IL magnetic nanocatalyst. The Fe3O4@TiO2 magnetic nanoparticles (MNPs) were prepared using beet juice extract and functionalized with IL based on DABCO. Moreover, the core-shell structured magnetic Fe3O4@TiO2-IL has been characterized by different techniques such as 1H-NMR, FT-IR, VSM, XRD, SEM, TGA, TEM and EDX. To the best of our knowledge, the prepared ionic liquid displayed a good protective and activator agent for magnetic nanocatalyst.  相似文献   
77.
Journal of Solid State Electrochemistry - Protonic ceramic fuel cells have become extremely interesting due to their high power output at the intermediate temperature range...  相似文献   
78.
Asgari  Mojtaba  Kouchakzadeh  Mohammad Ali 《Meccanica》2019,54(7):1001-1014
Meccanica - Simple formulas for calculating equivalent von Mises stress and von Mises effective plastic strain in an elastic–plastic ordinary peridynamic analysis are proposed. The equivalent...  相似文献   
79.
Nonlinear Dynamics - In this paper, a numerical simulation of an anomalous reaction–diffusion process in two-dimensional space with a nonlinear source term is presented. An efficient and...  相似文献   
80.
Nonlinear Dynamics - In this paper, the extended Hindmarsh–Rose neuron model, which considers the slow intracellular exchange of calcium ions between its store and the cytoplasm, is studied....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号